Can stem cells be used to generate new lungs? Ex vivo lung bioengineering with decellularized whole lung scaffolds.
نویسندگان
چکیده
For patients with end-stage lung diseases, lung transplantation is the only available therapeutic option. However, the number of suitable donor lungs is insufficient and lung transplants are complicated by significant graft failure and complications of immunosuppressive regimens. An alternative to classic organ replacement is desperately needed. Engineering of bioartificial organs using either natural or synthetic scaffolds is an exciting new potential option for generation of functional pulmonary tissue for human clinical application. Natural organ scaffolds can be generated by decellularization of native tissues; these acellular scaffolds retain the native organ ultrastructure and can be seeded with autologous cells towards the goal of regenerating functional tissues. Several decellularization strategies have been employed for lungs; however, there is no consensus on the optimal approach. A variety of cell types have been investigated as potential candidates for effective recellularization of acellular lung scaffolds. Candidate cells that might be best utilized are those which can be easily and reproducibly isolated, expanded in vitro, seeded onto decellularized matrices, induced to differentiate into pulmonary lineage cells, and which survive to functional maturity. Whole lung cell suspensions, endogenous progenitor cells, embryonic and adult stem cells and induced pluripotent stem (iPS) cells have been investigated for their applicability to repopulate acellular lung matrices. Ideally, patient-derived autologous cells would be used for lung recellularization as they have the potential to reduce the need for post-transplant immunosuppression. Several studies have performed transplantation of rudimentary bioengineered lung scaffolds in animal models with limited, short-term functionality but much further study is needed.
منابع مشابه
Lung bioengineering: physical stimuli and stem/progenitor cell biology interplay towards biofabricating a functional organ
A current approach to obtain bioengineered lungs as a future alternative for transplantation is based on seeding stem cells on decellularized lung scaffolds. A fundamental question to be solved in this approach is how to drive stem cell differentiation onto the different lung cell phenotypes. Whereas the use of soluble factors as agents to modulate the fate of stem cells was established from an...
متن کاملRecellularization of Decellularized Lung Scaffolds Is Enhanced by Dynamic Suspension Culture
Strategies are needed to improve repopulation of decellularized lung scaffolds with stromal and functional epithelial cells. We demonstrate that decellularized mouse lungs recellularized in a dynamic low fluid shear suspension bioreactor, termed the rotating wall vessel (RWV), contained more cells with decreased apoptosis, increased proliferation and enhanced levels of total RNA compared to sta...
متن کاملRevascularization of decellularized lung scaffolds: principles and progress.
There is a clear unmet clinical need for novel biotechnology-based therapeutic approaches to lung repair and/or replacement, such as tissue engineering of whole bioengineered lungs. Recent studies have demonstrated the feasibility of decellularizing the whole organ by removal of all its cellular components, thus leaving behind the extracellular matrix as a complex three-dimensional (3D) biomime...
متن کاملComparison of the Ex Vivo Expansion of UCB-Derived CD34+ in 3D DBM/MBA Scaffolds with USSC as a Feeder Layer
Objective(s): Ex vivo expansion of hematopoitic stem cells is an alternative way to increase umbilical cord blood (UCB)-CD34+ cells for bone marrow transplantation. For this purpose demineralized bone matrix (DBM) and mineralized bone allograft (MBA) as two scaffolds based on bone matrix and stem cell niche, were simultaneously used to enhance the effect of human mesenchymal pro...
متن کاملFunctional vascularized lung grafts for lung bioengineering
End-stage lung disease is the third leading cause of death worldwide, accounting for 400,000 deaths per year in the United States alone. To reduce the morbidity and mortality associated with lung disease, new therapeutic strategies aimed at promoting lung repair and increasing the number of donor lungs available for transplantation are being explored. Because of the extreme complexity of this o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Respirology
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2013